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PROF. DRAGOS GHIOCA

Problem 1. Let f(x) = x2 − 2. For each n ∈ N, we let f◦n := f ◦ f ◦ · · · ◦ f
(n times). Prove that for each n ∈ N there exist 2n real numbers x such that
f◦n(x) = x.

Solution. This follows using a table of signs first for P ◦n(x) (which is a polyno-
mial of degree 2n); note that we denote by P ◦n the n-th iterate of the polynomial
P (X). The point is that P (0) = −2 and also P (−2) = P (2) = 2. This means that
the equation P ◦n(x) = 0 has precisely 2n roots xn,i for i = 1, . . . , 2n which are all
between −2 and 2; this is proven by induction on n and furthermore, these roots
alternate with the roots of P ◦(n−1)(x) = 0. These facts:

• −2 < xn,1 < xn,2 < · · · < xn,2n−1 < 0 < xn,2n−1+1 < · · · < xn,2n < 2;
• P (0) = −2, while P (−2) = P (2) = 2

yield the conclusion.

Problem 2. Prove that there exists an infinite set S of points on the unit circle
of radius 1 with the property that the distance between any two points from the
set S is a rational number.

Solution. We need to find points xi on the unit circle at angles αi (starting
with α0 = 0) such that sin((αi − αj)/2) is a rational number for each i and j.
So, it suffices to have sin(αi/2) and cos(αi/2) both rational numbers. This can be
achieved since there exist infinitely many points with rational coordinates on the
unit circle: (

2u

u2 + 1
,

1− u2

u2 + 1

)
for any u ∈ Q.

Problem 3. Consider the sequence {xn}n≥0 given by:

x0 = 5 and xn+1 = xn +
1

xn
for all n ≥ 0.

Prove that 45 < x1000 < 45.1.

Solution. We have

x2n+1 = x2n + 2 +
1

x2n
and so, x2n+1 > x2n + 2 for each n ≥ 0, which yields that

x21000 > x20 + 2 · 1000 = 2025 = 452;

this provides the first inequality. Now, for the second inequality, we use that

x21000 = 2025 +

1000∑
k=0

1

x2k
1
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and moreover x2k > 25 + 2k, which means that

x1000

= 2025 +

1000∑
k=0

1

x2k

< 2025 +

1000∑
k=0

1

25 + 2k

< 2025 +
1

2025
+

39∑
k=0

25

25 + 50k

< 2025.0005 +

39∑
k=0

1

1 + 2k

< 2026.0005 +

12∑
k=0

3

3 + 6k

< 2026.002 +

12∑
k=0

1

1 + 2k

< 2027.01 +

3∑
k=0

3

3 + 6k

< 2028.01 +
1

3
+

1

5
+

1

6
< 2029.01

< 2025 + 0.01 + 5

< 45.12

Problem 4. Let n ∈ N and let a0, a1, . . . , an+1 ∈ R such that a0 = an+1 = 0 and
|ak−1− 2ak + ak+1| ≤ 1 for each k = 1, . . . , n. Prove that for each k = 0, . . . , n+ 1,

we have |ak| ≤ k(n+1−k)
2 .

Solution. Writing
a0 − 2a1 + a2 = b1

a1 − 2a2 + a3 = b2

· · · · · · · · ·
an−1 − 2an + an+1 = bn

coupled with the information that a0 = an+1 = 0 yields a system of n equations
with n unknowns a1, . . . , an. So, we can solve it. We find ak by multiplying the
second equation by 2 and add it to the first equation and then add to it the third
equation multiplied by 3, and so on, until multiplying the k-th equation by k and
add it to our sum; we get

−(k + 1)ak + kak+1 = b1 + 2b2 + · · ·+ kbk.

Then we start eliminating the variables starting with the last equation and proceed
similarly, i.e., add the last equation with twice the next to the last equation and also
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add to the sum three times the equation involving bn−2, four times the equation
involving bn−3 and so on, until we add (n − k) times the equation involving bk+1

and get

−(n− k + 1)ak+1 + (n− k)ak = bn + 2bn−1 + · · ·+ (n− k)bk+1.

We solve for ak from the above two equations (multiplying the first by (n− k + 1)
and then add it to k-times the second equation) and we get

−(n+ 1)ak = (n− k + 1) ·
k∑

j=1

jbj + k ·
n−k∑
j=1

jbn+1−j .

Because |bj | ≤ 1 for each j = 1, . . . , n, we conclude that indeed |ak| ≤ (n−k+1)k
2 , as

desired.

Problem 5. A sequence {xn}n≥0 is defined as follows:

x0 = 2, x1 =
5

2
and for each n ≥ 1, we have xn+1 = xn(x2n−1 − 2)− x1.

Prove that for each n ∈ N, we have that the integer part of xn (denoted by [xn])

equals 2
2n−(−1)n

3 .

Solution. We try to find the general form of our sequence xn by writing it as
xn = vn + v−1

n for a sequence vn (which we will solve next). The motivation for
looking for such a form for our sequence {xn}n≥0 comes from solving for few terms
of it:

x0 = 2, x1 =
5

2
, x2 =

5

2
= 2 +

1

2
, x3 =

65

8
= 8 +

1

8
, x4 = 32 +

1

32
· · ·

So, the general recurrence formula yields

vn+1 +
1

vn+1
= vnv

2
n−1 +

1

vnv2n−1

+
vn
v2n−1

+
v2n−1

vn
− 5

2
.

Now, if we were to have vn = vn · v2n−1 for each n ≥ 1 and also, if we were to have
vn

v2
n−1
∈
{

2, 12
}

, then we would achieve both

vn
v2n−1

+
v2n−1

vn
=

5

2

and also,

vn+1 +
1

vn+1
= vnv

2
n−1 +

1

vnv2n−1

.

So, again looking at the first few terms computed above in the sequence xn, we get
the idea that vn = 2yn . In this case, the equality vn+1 = vn · v2n−1 yields

yn+1 = yn + 2yn−1,

while the relation vn
v2
n−1
∈
{

2, 12
}

yields

yn − 2yn−1 ∈ {−1, 1}.
The linear recurrence formula satisfied by {yn} yields that yn = α ·2n+β ·(−1)n for
some constants α and β, while the relation yn−2yn−1 ∈ {−1, 1} yields that β = ± 1

3 .
Using the information for the first values of yn (based on our computation above)

as y1 = y2 = 1, y3 = 3, y4 = 5, yields that yn = 2n−(−1)n

3 for each n ≥ 0; note



4 PROF. DRAGOS GHIOCA

that 2n ≡ (−1)n (mod 3) and so, the exponent yn is indeed always a nonnegative
integer. In conclusion, we get that

xn = 2
2n−(−1)n

3 + 2
(−1)n−2n

3

and since the second term above is always in the interval [0, 1), while the first term
is always an integer, we derive the desired conclusion.

Problem 6. Let m ∈ N. We consider the m-by-2m matrix

A = (ai,j) 1≤i≤m
1≤j≤2m

with the property that each entry ai,j is either −1, 0, or 1. Prove that there exist
integers x1, . . . , x2m not all equal to 0 but also satisfying the inequality |xi| ≤ m
for each i = 1, . . . ,m such that

2m∑
j=1

ai,jxj = 0 for each i = 1, . . . ,m.

Solution. We consider the set S consisting of all tuples (b1, . . . , bm) with the
property that there exist some ε1, . . . , ε2m ∈ {0, 1, . . . ,m} such that for each i =
1, . . . ,m, we have

bi =

m∑
j=1

ai,jεj .

Clearly, each bi satisfies the inequality |bi| ≤ m2 since ai,j ∈ {−1, 0, 1}. So, the set
S contains at most (m2 + 1)m distinct tuples. On the other hand, we have exactly
(m + 1)2m > (m2 + 1)m elements, thus showing that there must be two tuples
(ε1, . . . , ε2m) and (δ1, . . . , δ2m) (where each εj and each δj is an integer between 0
and m) such that for each i = 1, . . . ,m, we have

2m∑
j=1

ai,jεj =

2m∑
j=1

ai,jδj .

Therefore, letting xj = εj − δj for each j = 1, . . . , 2m yields integer numbers
satisfying the inequality |xj | ≤ m for which we have that

2m∑
j=1

ai,jxj = 0 for each i = 1, . . . ,m.


